+7(495)768-43-58

услуги
Сделать заявку
Промышленная Безопасность

Техническая диагностика и неразрушающий контроля

Неразрушающий контроль

Зарождение неразрушающего контроля относят ко времени открытия в ноябре 1895 г. рентгеновских лучей.

Появление современных крупномасштабных объектов — атомных электростанций, терминалов со сжиженным газом, морских буровых установок, больших химических комбинатов, крупных авиалайнеров — привело наряду с экономическими выгодами к большим негативным последствиям в случае выхода их из строя. Человечество не может отказаться от таких сооружений, но оно может предотвратить катастрофы или уменьшить их последствия путем эффективного использования методов и средств, таких как неразрушающий контроль и техническая диагностика.

В настоящее время неразрушающий контроль — одно из необходимых условий безопасности. Во всем мире ему уделяется самое пристальное внимание. Известно, что развитые страны ежегодно теряют 10% своего национального дохода из-за низкого качества выпускаемой продукции. Во всем мире ежегодно увеличивается число крупных аварий и катастроф. Потери только от дефектов усталости металла в США составляют более 100 млрд. дол. в год, а от коррозии — более 200 млрд. дол. в год. Убытки от низкого качества материалов и изделий в нашей стране значительно выше, а если учесть, что часть промышленной продукции не внедряется в производство, сравнительно быстро выходит из строя по различным техническим и организационным причинам, принять во внимание колоссальные объемы ремонта, нарушение экологии, то потери материального и морального порядка еще более возрастают, требуют тщательного учета, анализа и принятия кардинальных решений.

Неразрушающий контроль - это регулярная проверка прочности деталей и оборудования, которые требуют особой надежности. Он используется при строительстве крупных объектов, при эксплуатации опасных производственных объектов в таких сферах, как машиностроение, энергетика, металлопроизводство и других. В процедуру неразрушающего контроля входит описание всех основных параметров и мероприятий, которые следует соблюдать при использовании техники неразрушающего контроля для решения конкретной задачи в соответствии с установленными стандартом, нормами или техническими условиями. Процедура неразрушающего контроля может вовлечь применение более чем одного метода неразрушающего контроля или техники.

Неразрушающий контроль деталей позволяет оценить непосредственные физические свойства, так или иначе характеризующие прочность или надежность соединений. Существующие изменения этих свойств обычно связаны с наличием дефектов, которых при таком типе, как неразрушающий контроль металла успешно можно избежать.

К средствам неразрушающего контроля относят контрольно-измерительную аппаратуру, в которой используют проникающие поля, излучения и вещества для получения информации о качестве исследуемых материалов и объектов.



   

Акустический контроль

 


К акустическим методам неразрушающего контроля относят обширную область испытания материалов и изделий, основанную на применении упругих колебании и волн, точнее, на регистрации параметров упругих волн, возбуждаемых или возникающих в объекте неразрушающего контроля.


Для акустического метода неразрушающего контроля применяют колебания ультразвукового и звукового колебания диапазонов частотой от 50 Гц до 50 МГц. Интенсивность колебаний обычно невелика, не превышает 1 кВт/м2. Такие колебания происходят в области упругих деформаций среды, где напряжения и деформации связаны пропорциональной зависимостью (область линейной акустики).


Методы неразрушающего акустического контроля широко применяют благодаря ряду их преимуществ: волны легко вводятся в объект контроля, хорошо распространяются в металлах, бетоне и других материалах; эффективны при выявлении дефектов с малым раскрытием, чувствительны к изменению структуры и физико-механических свойств материалов, не представляют опасности для персонала. Использование различных типов волн (продольных, поперечных, поверхностных, нормальных и других) расширяет возможности акустических методов неразрушающего контроля.


Мировой опыт показывает, что использование средств ультразвукового неразрушающего контроля в машиностроении, металлургии, энергетике, строительстве, транспортной промышленности способствует улучшению качества продукции, обеспечению безаварийной эксплуатации энергетических установок и транспортных средств, повышению производительности труда, снижению материалоемкости конструкций и сооружений, улучшению качества выпускаемой продукции, экономии сырьевых и трудовых ресурсов.


Акустический метод неразрушающего контроля находит свое применение в различных областях: котлонадзор, системы газоснабжения, подъемные сооружения, объекты горнорудной промышленности, объекты угольной промышленности, нефтяная и газовая промышленность, металлургическая промышленность, оборудование взрывопожароопасных и химически опасных производств, объекты железнодорожного транспорта, объекты хранения и переработки зерна.


Из рассмотренных ранее акустических методов неразрушающего контроля наибольшее практическое применение находит эхо-метод. Около 90% объектов, контролируемых акустическими методами неразрушающего контроля, проверяют эхо-методом, применяя различные типы волн. С его помощью решают задачи дефектоскопии поковок, отливок, сварных соединений, многих неметаллических материалов. Эхо-метод используют также для измерения размеров изделий.


Зеркально-теневой метод акустического контроля используют вместо или в дополнение к эхо-методу для выявления дефектов, дающих слабое отражение ультразвуковых волн в направлении раздельно-совмещенного преобразователя (например, вертикальные трещины).


Эхо-зеркальный метод акустического контроля также применяют для выявления дефектов, ориентированных перпендикулярно поверхности ввода. При этом он обеспечивает более высокую чувствительность к таким дефектам, но требует, чтобы в зоне расположения дефектов был достаточно большой участок ровной поверхности. В рельсах, например, это требование не выполняется, поэтому там возможно применение только зеркально-теневого метода. Эхо-зеркальный метод в варианте "тандем" используют для выявления вертикальных трещин и непроваров при неразрушающем контроле сварных соединений. Дефекты некоторых видов сварки, например, непровар при электронно-лучевой сварке, имеют гладкую отражающую поверхность, очень слабо рассеивающую ультразвуковые волны, но такие дефекты хорошо выявляются эхо-зеркальным методом.


Вариант "косой тандем" применяют, когда расположение преобразователей в одной плоскости затруднительно. Его используют, например, для выявления поперечных трещин в сварных швах.


Дельта и дифракционно-временной методы также используют для получения дополнительной информации о дефектах при неразрушающем контроле сварных соединений.


Теневой и эхо-сквозной методы используют только при двустороннем доступе к изделию, для автоматического контроля изделий простой формы, например, листов в иммерсионной ванне.


Теневой метод применяют также для контроля изделий с большим уровнем структурной реверберации, т.е. шумов, связанных с отражением ультразвука от неоднородностей, крупных зерен, дефектоскопии многослойных конструкций и изделий из слоистых пластиков.


Локальный метод вынужденных колебаний применяют для измерения малых трещин при одностороннем доступе.


Интегральный метод вынужденных колебаний применяют для определения модулей упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой формы, вырезанных из материала изделия, т.е. при разрушающих испытаниях. В последнее время этот метод используют также для неразрушающего контроля небольших изделий: абразивных кругов, турбинных лопаток.


Интегральный метод свободных колебаний используют для проверки бандажей вагонных колес или стеклянной посуды "по чистоте звона" с субъективной оценкой результатов на слух.


Реверберационный, импедансный, велосимметрический, акустико-топографический методы и локальный метод свободных колебаний используют в основном для контроля многослойных конструкций. Реверберационным методом обнаруживают, в основном, нарушения соединений металлических слоев (обшивок) с металлическими или неметаллическими силовыми элементами или наполнителями. Импедансным методом выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых в различных сочетаниях. Велосимметрическим методом и локальным методом свободных колебаний контролируют, в основном, изделия из полимерных композиционных материалов. Акустико-топографический метод применяют для обнаружения дефектов преимущественно в металлических многослойных конструкциях (сотовые панели, биметаллы и т.п.).


Вибрационно-диагностический и шумо-диагностический методы служат для диагностики работающих механизмов. Метод акустической эмиссии применяют в качестве средства исследования материалов, конструкций, контроля изделий (например, при гидроиспытаниях) и диагностики во время эксплуатации. Его важными преимуществами перед другими методами контроля является то, что он реагирует только на развивающиеся, действительно опасные дефекты, а также возможность проверки больших участков или даже всего изделия без сканирования его преобразователем. Основной его недостаток как средства контроля — трудность выделения сигналов от развивающихся дефектов на фоне помех (кавитационных пузырьков в жидкости, подаваемой в объект при гидроиспытаниях, трения в разъемных соединениях и т.д.).